Mizan: Optimizing Graph Mining in Large Parallel Systems
نویسندگان
چکیده
Extracting information from graphs, from finding shortest paths to complex graph mining, is essential for many applications. Due to the shear size of modern graphs (e.g., social networks), processing must be done on large parallel computing infrastructures (e.g., the cloud). Earlier approaches relied on the MapReduce framework, which was proved inadequate for graph algorithms. More recently, the message passing model (e.g., Pregel) has emerged. Although the Pregel model has many advantages, it is agnostic to the graph properties and the architecture of the underlying computing infrastructure, leading to suboptimal performance. In this paper, we propose Mizan, a layer between the users’ code and the computing infrastructure. Mizan considers the structure of the input graph and the architecture of the infrastructure in order to: (i) decide whether it is beneficial to generate a near-optimal partitioning of the graph in a preprocessing step, and (ii) choose between typical point-topoint message passing and a novel approach that puts computing nodes in a virtual overlay ring. We deployed Mizan on a small local Linux cluster, on the cloud (256 virtual machines in Amazon EC2), and on an IBM Blue Gene/P supercomputer (1024 CPUs). We show that Mizan executes common algorithms on very large graphs 1-2 orders of magnitude faster than MapReduce-based implementations and up to one order of magnitude faster than implementations relying on Pregel-like hash-based graph partitioning.
منابع مشابه
Parallel computation framework for optimizing trailer routes in bulk transportation
We consider a rich tanker trailer routing problem with stochastic transit times for chemicals and liquid bulk orders. A typical route of the tanker trailer comprises of sourcing a cleaned and prepped trailer from a pre-wash location, pickup and delivery of chemical orders, cleaning the tanker trailer at a post-wash location after order delivery and prepping for the next order. Unlike traditiona...
متن کاملComparing k-means clusters on parallel Persian-English corpus
This paper compares clusters of aligned Persian and English texts obtained from k-means method. Text clustering has many applications in various fields of natural language processing. So far, much English documents clustering research has been accomplished. Now this question arises, are the results of them extendable to other languages? Since the goal of document clustering is grouping of docum...
متن کاملA Hybrid Meta-heuristic Approach to Cope with State Space Explosion in Model Checking Technique for Deadlock Freeness
Model checking is an automatic technique for software verification through which all reachable states are generated from an initial state to finding errors and desirable patterns. In the model checking approach, the behavior and structure of system should be modeled. Graph transformation system is a graphical formal modeling language to specify and model the system. However, modeling of large s...
متن کاملAn Experimental Comparison of Pregel-like Graph Processing Systems
The introduction of Google’s Pregel generated much interest in the field of large-scale graph data processing, inspiring the development of Pregel-like systems such as Apache Giraph, GPS, Mizan, and GraphLab, all of which have appeared in the past two years. To gain an understanding of how Pregel-like systems perform, we conduct a study to experimentally compare Giraph, GPS, Mizan, and GraphLab...
متن کاملOptimizing Teleportation Cost in Multi-Partition Distributed Quantum Circuits
There are many obstacles in quantum circuits implementation with large scales, so distributed quantum systems are appropriate solution for these quantum circuits. Therefore, reducing the number of quantum teleportation leads to improve the cost of implementing a quantum circuit. The minimum number of teleportations can be considered as a measure of the efficiency of distributed quantum systems....
متن کامل